Product formula for Atiyah-Patodi-Singer index classes and higher signatures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product Formula for Atiyah-patodi-singer Index Classes and Higher Signatures

We define generalized Atiyah-Patodi-Singer boundary conditions of product type for Dirac operators associated to C∗-vector bundles on the product of a compact manifold with boundary and a closed manifold. We prove a product formula for the K-theoretic index classes, which we use to generalize the product formula for the topological signature to higher signatures.

متن کامل

A Higher Atiyah–Patodi–Singer Index Theorem for the Signature Operator on Galois Coverings

Let (N, g) be a closed Riemannian manifold of dimension 2m − 1 and let 0→ Ñ → N be a Galois covering of N . We assume that 0 is of polynomial growth with respect to a word metric and that 1Ñ is L 2-invertible in degree m. By employing spectral sections with a symmetry property with respect to the ?-Hodge operator, we define the higher eta invariant associated with the signature operator on Ñ , ...

متن کامل

Spectral Sections and Higher Atiyah-patodi-singer Index Theory on Galois Coverings

In this paper we consider Γ → M̃ → M , a Galois covering with boundary and D̃/, a Γ-invariant generalized Dirac operator on M̃ . We assume that the group Γ is of polynomial growth with respect to a word metric. By employing the notion of noncommutative spectral section associated to the boundary operator D̃/0 and the b-calculus on Galois coverings with boundary, we develop a higher Atiyah-PatodiSin...

متن کامل

- Patodi - Singer Index Theorem ∗

In [Wu], the noncommutative Atiyah-Patodi-Singer index theorem was proved. In this paper, we extend this theorem to the equivariant case.

متن کامل

The Atiyah-patodi-singer Index Theorem for Dirac Operators over C∗-algebras

We prove an Atiyah-Patodi-Singer index theorem for Dirac operators twisted by C-vector bundles. We use it to derive a general product formula for η-forms and to define and study new ρ-invariants generalizing Lott’s higher ρ-form. The higher Atiyah-Patodi-Singer index theorem of LeichtnamPiazza can be recovered by applying the theorem to Dirac operators twisted by the Mishenko-Fomenko bundle ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of K-Theory

سال: 2010

ISSN: 1865-2433,1865-5394

DOI: 10.1017/is010002020jkt106