Product formula for Atiyah-Patodi-Singer index classes and higher signatures
نویسندگان
چکیده
منابع مشابه
Product Formula for Atiyah-patodi-singer Index Classes and Higher Signatures
We define generalized Atiyah-Patodi-Singer boundary conditions of product type for Dirac operators associated to C∗-vector bundles on the product of a compact manifold with boundary and a closed manifold. We prove a product formula for the K-theoretic index classes, which we use to generalize the product formula for the topological signature to higher signatures.
متن کاملA Higher Atiyah–Patodi–Singer Index Theorem for the Signature Operator on Galois Coverings
Let (N, g) be a closed Riemannian manifold of dimension 2m − 1 and let 0→ Ñ → N be a Galois covering of N . We assume that 0 is of polynomial growth with respect to a word metric and that 1Ñ is L 2-invertible in degree m. By employing spectral sections with a symmetry property with respect to the ?-Hodge operator, we define the higher eta invariant associated with the signature operator on Ñ , ...
متن کاملSpectral Sections and Higher Atiyah-patodi-singer Index Theory on Galois Coverings
In this paper we consider Γ → M̃ → M , a Galois covering with boundary and D̃/, a Γ-invariant generalized Dirac operator on M̃ . We assume that the group Γ is of polynomial growth with respect to a word metric. By employing the notion of noncommutative spectral section associated to the boundary operator D̃/0 and the b-calculus on Galois coverings with boundary, we develop a higher Atiyah-PatodiSin...
متن کامل- Patodi - Singer Index Theorem ∗
In [Wu], the noncommutative Atiyah-Patodi-Singer index theorem was proved. In this paper, we extend this theorem to the equivariant case.
متن کاملThe Atiyah-patodi-singer Index Theorem for Dirac Operators over C∗-algebras
We prove an Atiyah-Patodi-Singer index theorem for Dirac operators twisted by C-vector bundles. We use it to derive a general product formula for η-forms and to define and study new ρ-invariants generalizing Lott’s higher ρ-form. The higher Atiyah-Patodi-Singer index theorem of LeichtnamPiazza can be recovered by applying the theorem to Dirac operators twisted by the Mishenko-Fomenko bundle ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of K-Theory
سال: 2010
ISSN: 1865-2433,1865-5394
DOI: 10.1017/is010002020jkt106